
 1

���������	�

 � � �� ��� �� �� ��� � �

� � � � � �

(Draft Release)

Li Wang

August 2005

 2

Table of Contents�
Table of Contents ...2
Table of Pictures ..3
Abstract ..4
1 System Function and Characteristics ..5
2 System Architecture ..6
3 Working Principle ...7
4 Key Techniques...9

4.1 Handoff Protocol...9
4.2 TCP Handoff implementation ...10

4.2.1 Connection Reconstructing...11
4.2.2 HTTP Request Zero Copy Relay ..12
4.2.3 Connection Relay..12

4.3 Symmetric Multiple-Thread Transaction-Driven Architecture.......................13
4.4 ARP problem and the solution: ARP Filtering..14
4.5 Regular Expression Rule Matching ..15
4.6 Dynamic IP Tunneling ..15
4.7 Local Node Feature...16
4.8 P-HTTP Support (Under Discussion) ...16

4.8.1 Single Handoff Course..16
4.8.2 Multi-Handoff Course...17
4.8.3 BE Scheduling Technique...18

4.9 High Availability...20
4.10 Dynamic Scalability..20
4.11 Journaling..20

 3

Table of Pictures

Figure 1. 1 TCPHA’s Goal ..5
Figure 2. 1 TCPHA architecture ...6
Figure 3. 1 TCPHA packets flow..8
Figure 4. 1 Handoff request ..9
Figure 4. 2 Handoff ACK..9
Figure 4. 3 TCP handoff implementation ...11
Figure 4. 4 Linux network data structure..12
Figure 4. 5 TCPHA process flow..13

 4

Abstract

In popular cluster-based Web server scheduling techniques, content-aware scheduling
is a popular scheduling technique, it has many advantages. But the existing systems
have low scalability, scheduler performance bottleneck problem, which lead to the
advantages can not be fully exerted. TCP Handoff is a novel core technique to support
content-aware scheduling, but for the implementation is difficult, at present the
technique is still under discussion, no open source implementation on Linux and no
TCP Handoff based practical cluster scheduling systems appear. We propose a TCP
Handoff implementation, compare with the popular implementation techniques, it has
higher performance. It adopts some novel techniques, such as connection
reconstruction, connection relay and HTTP zero copy relay. ARP filtering is an
optimal solution to ARP problem. Based these techniques, and dynamic IP tunnel,
multi-handoff, we propose a novel content-aware scheduling system TCPHA. It runs
inside the OS kernel, avoids the overhead of context switching and memory copying
between user-space and kernel-space, has high performance. It is implemented as a
loadable kernel device driver module, no need modifying network stack. No need
modifying user space server application codes and browser codes, everything is
transparent from user space perspective and from client perspective. The system
installation and configuration is very simple. System also supports regular expression,
the administrator can set very complicated schedule rules. TCPHA can be used to
build a high performance and high availability server based on a cluster of Linux
servers. Such as cluster of big website, especially the software download website and
media service website. Furthermore, with some tiny modifications, the core
techniques can be used in distributed computing, fault tolerance, fault recovery,
backup fields etc. TCPHA has been published in internet
(http://dragon.linux-vs.org/~dragonfly/) and is attracting more attentions. It has been
accepted by well-known LVS project as a subproject of it.

 5

1 System Function and Characteristics

TCPHA can be used to build a high-performance and high available server based on a
cluster of Linux servers. TCPHA implements kernel scalable content-aware request
distribution based on TCP Handoff for the Linux operating system. The function of
TCPHA is illustrated as follows:

Figure 1. 1 TCPHA’s Goal

It distributes the requests by content to BE, BE serves requests, and sends response
directly to client. System efficiently avoids the FE bottleneck problem existing in
popular server clusters, bring to system higher scalability. Furthermore, it bring BE
high cache hit rate, which will greatly improve system performance. So TCPHA
combines strong points of popular layer-4 and layer-7 schedule system, overcomes
their shortcomings. It has high performance.

TCPHA is implemented based Linux 2.4.20 kernel, developed with C. It has two main
releases: 0.2 release and 0.3 release. 0.2 release is stable, 0.3 release try to adopt a

 6

novel technique to support P-HTTP: Multi Connection Handoff, it is under tests.
TCPHA runs inside the OS kernel, implements TCP Handoff, ARP filtering, kernel
symmetric multiple-thread transaction-driven architecture, dynamic IP tunnel, HTTP
packet zero copy relay techniques etc. It efficiently avoids the overhead of context
switching and memory copying between user-space and kernel-space. System is
implemented as loadable kernel device driver module, no need modifying OS network
stack. No need modifying user space server application codes and client browser
codes, everything is transparent from user space perspective and from client
perspective. System installation and configuration are very simple. System also
support regular expression rule setting, user can thus set quite complicated schedule
rules.

TCPHA has been published in internet (http://dragon.linux-vs.org/~dragonfly/), is
attracting more attentions over the world, and is accepted by well known LVS project
(Linux Virtual Server Project, http://www.linuxvirtualserver.org/) as subproject of it.

2 System Architecture

TCPHA system architecture is shown in figure 3.1:

���� Figure 2. 1 TCPHA architecture

TCPHA is composed of tcpha_fe (dispatcher), tcpha_be (real server). It runs inside
OS Kernel and is implemented as loadable device driver module. Its installation is
very simple, no need making any modifications to OS kernel. More details about
TCPHA architecture are as follows:

 7

FE
� Connection Management Module, Manage the persistent connections with BE,
maintain a persistent connection pool. When FE wants to send handoff request to one
BE, it is responsible for assigning an idle persistent connection with this BE to FE.
� HTTP Analysis Module, Analyze HTTP requests according to HTTP protocol.
Search schedule rule table by HTTP packet content and BE listing, choosing a BE.
� Kernel Thread Pool, Maintain server daemons. Once a client request is received,
it assigns an idle server daemon to serve the request.
� Handoff Request Constructing Module, Construct handoff request according to
handoff protocol. Call connection information extracting module to acquire
connection information.
� Connection Information Extracting Module, Extract connection information,
such as client address and port.
� IP Tunnel Packet Constructing and Forwarding Module, Intercept successive
packets on migrated connections in IP layer, encapsulate packets according to IP
Tunnel protocol, forward them to chosen BE.

BE
� Handoff ACK Constructing Module, Construct handoff ACK according to
handoff protocol and handoff result, send out to FE.
� Connection Reconstructing Module, Reconstruct connection data structure,
relay it to user space server application.
� Connection Information Extracting Module, Extract connection information
from handoff request.
� Kernel Thread Pool, Maintain server daemons. Once a handoff request is
received, assign an idle server daemon to serve it.
� ARP Filtering Module, Process ARP packets. Details about ARP problem see
chapter 4.4.

The architecture of 0.3 release is roughly the same with 0.1 release, just more
complicated. For 0.3 release is still under tests, here we won’t introduce it more,
details see chapter 4.7.

3 Working Principle

System (0.2 release) working principle is as follows: Client sends a TCP connection
request to FE, TCPHA on FE assigns an idle server daemon to serve request from
kernel thread pool, creates a connection with client. Client sends HTTP request. When
server daemon receives the HTTP request, it calls HTTP analysis module, parses the
request according to HTTP protocol, extracts information for schedule, such as URL.
Then it searches schedule rule table, chooses a BE. Then searches BE listing to
acquire details about this BE, such as IP address, port, load. Next it calls handoff

 8

request constructing module to construct handoff request according to handoff
protocol. Then it assigns an idle persistent connection with chosen BE from�persistent
connection pool, sends out the handoff request to chosen BE.

Server daemon on BE receives handoff request, first checks the ‘magic number’ field
to confirm handoff packet. Then calls connection information extracting module to
extract connection information from packet, modifies some fields in ‘sk_buff’ to let
packet seems to be the original HTTP request from user space application perspective.
Next it calls connection reconstructing module to reconstruct connection data
structure. Last it calls handoff ACK constructing module to construct handoff ACK,
sends it out to FE.

Figure 3. 1 TCPHA packets flow

TCPHA on FE receives handoff ACK, checks ‘magic number’ field and ‘conn_magic’
field, then extracts handoff operation result information from it. If handoff operation
is successful, TCPHA will reset the connection. Note, here mentioned ‘reset’ is only
clearing all the connection data structure, but doesn’t initiate a normal four-way
handshake course to close connection. It is the same behavior with receiving RST
packet on the connection or connection timeout. Then TCPHA on FE will register the
four-tuple of this connection and destination BE information to connection hash table
which will be queried by IP tunnel packet constructing module. That module will
intercept the successive packets on this connection and forwards them to chosen BE
in IP layer.

 9

TCPHA packets flow is shown in figure 4.1, First Client initiates a normal three-way
handshaking to create a TCP connection with FE. Then client sends request 1, this
packet is modified by FE, then is forwarded to BE. In BE, this connection is
reconstructed. BE will send ACK directly to client, bypassing FE. The successive
packets will be forwarded to BE in IP layer by FE. Responses will be sent directly to
client by BE.

The system process of 0.3 release is roughly the same with 0.2 release, only to
persistent connection, 0.3 release may initiate multi-handoff, details see chapter 4.7.

4 Key Techniques

4.1 Handoff Protocol

FE needs transmitting characteristic information of TCP connection and original
HTTP request to scheduled BE, BE should send ACK to FE. So an application layer
communication protocol is needed. we name it Handoff protocol. Its details are as
follows:

Handoff Request, it contains connection information and HTTP request. In the
headroom of HTTP request packet buffer, we inject a handoff request header between

TCP header and HTTP header, its format is
shown in figure 5.1. First 32 bits is TCP
Handoff packet identifier, its value is
0x12968b9. Next 32 bits is connection
identifier, its value is the next sequence
number will be received on this connection.
Next is a ‘conn_info’ structure, which contains

Figure 4. 1 Handoff request
connection information. After that is the original HTTP request packet. Handoff
request is sent to BE by FE when FE initiates a TCP handoff.

Handoff ACK, Handoff ACK packet format is shown in
figure 5.2. ‘Magic number’ and ‘conn_magic’ are the same
with Handoff request. ‘Msg’ is an enumeration variable. It
indicates the handoff result.

Figure 4. 2 Handoff ACK

The value of ‘conn_magic’ is copied from the corresponding handoff request. So FE

 10

can confirm the ACK is to which request. Handoff ACK is sent to FE by BE after BE
has finished the handoff operation.

As we have seen, only one packet exchange is needed during handoff course, so the
performance is high.

4.2 TCP Handoff implementation

In almost all previous socket handoff systems, they adopt faked 3-way handshaking
technique. The core idea of it is adding a module in the TCP layer in the network
stack. It fakes the client, does the three-way handshaking with network stack, namely
it generates the SYN, ACK packet the same with client sent to FE, sends them in turn
to network stack. In fact, the technique performance is low, and is unnecessary. In
TCPHA, we propose Agile Handoff whose concept is borrowed from agile software
developing to implement TCP Handoff.

Agile handoff is shown in figure 5.3, primary modules are SHS (SH sender), PR
(packet router) and SHR (SH Receiver). The working principle is as follows:

1. When FE decides to initiate a handoff, it informs SHS. SHS collects connection
information, rewrites HTTP request, and adds the handoff request header.

2. SHS chooses an idle persistent connection which is beforehand created with
scheduled BE from the connection pool, sends out the handoff request to SHR on
scheduled BE.

3. SHR on scheduled BE receives the handoff request, extracts the connection
information and reconstructs the connection data structure, and uses HTTP zero copy
relay technique to queue the original HTTP request to the receive queue of the newly
created connection, uses connection relay technique to relay the connection to the user
space server application, which will serve the HTTP request, sends out the response
directly to client.

4. SHR constructs handoff ACK, sends it to FE.

5. SHS on FE receives handoff ACK, destroys the data structure of the connection,
informs PR the four-tuple of the connection and BE address, PR will forward the
successive packets on the connection to BE in the IP layer.

As mentioned above, only five steps are needed in the TCP handoff course, only one
packets exchange is needed between FE and BE, so the performance is high. And the
entire course is transparent from client and user space application perspective. So no
need making any modifications to client and user space application.

 11

Figure 4. 3 TCP handoff implementation

Agile handoff constitutes of three sub techniques: connection reconstructing,
connection relay and HTTP request zero copy relay.

4.2.1 Connection Reconstructing

Connection Reconstructing technique utilizes the connection information to
reconstruct connection data structure inside BE runtime kernel. By studying the
typical Web server programming model, we will discover that a typical Web server
program is in a infinite loop: listening connection requests from clients on a listen
socket (‘accept()’ system call), if receives any request, Operation system network
stack does the three-way handshaking according to TCP protocol to create a TCP
connection with client, then return a socket descriptor to application to identify the
newly created connection (the return value of ‘accept()’). Application uses the
identifier to transmit data with client, and then closes the connection. Certainly,
programmer may adopt multi-process or multi-thread to parallelize waiting requests
and serving requests.

As above analysis, TCP connection is created by ‘accept()’ system call, and the course
is done by operation system network stack, which is transparent from user application
perspective. User application operates the new connection only by the return value of
‘accept()’ system call, which edifies us that to reconstruct connection, we need only
simulating accept() call, constructing connection data structure, registering in the
system hash tables. Besides, it needs cooperating with FE to acquire connection
information, such as remote IP address, port etc.

Steps are as follows:
(1) Allocate ‘sock’ structure and initialize it;
(2) Search the route to client, fill in the ‘sock’ structure with route information;
(3) Extract the connection information from handoff request;
(4) Modify the ‘sock’ structure according to connection information;
(5) Hash the ‘sock’ structure to system hash tables.

 12

4.2.2 HTTP Request Zero Copy Relay

After connection reconstructing, the HTTP request is needed to queue to receive
queue of the newly created connection, then using connection relay technique to relay
the connection to user application.

In Linux, for each packet, before it is copied to user buffer, it is placed in a kernel
buffer, traverses the network stack, and a ‘sk_buff’ structure is allocated to record
control information. Each protocol layer operates the packet through the ‘sk_buff’
structure. As our system runs inside the OS kernel, can access kernel data structure,
including the ‘sk_buff’ structure. So we can modify the ‘sk_buff’ structure, change
the owner of the packet to new connection, and let packet seen from user application
perspective to be the original HTTP request sent by client, leave the packet buffer
untouched. So the HTTP request can be relayed to user application with zero copy.

Steps are as follows:
(1) Increase the value of ‘data’ field of ‘skb’, skip the handoff request header;
(2) Modify ‘copied_seq’ field, indicate the packet has been accepted by network
stack;
(3) Drop the old route;
(4) Change the owner of the packet to new connection;
(5) Queue the packet to receive queue of the new connection.

4.2.3 Connection Relay

TCP connection is a static concept, it can be regarded as a resource, it has owner. The
owner is process. Connection reconstructing only constructs the connection data
structure, we must deliver it to owner, only that it can be utilized by owner. To this
case, owner surely is the user space Web server application. How to let user space
Web server application accept the fake connection, is a key technique. Here we
explore connection relay, it can relay a connection from a process to another listen
process.

 Figure 4. 4 Linux network data structure

As shown in figure 5.4, In Linux TCP/IP network stack implementation, there is an

 13

important data structure ‘sock’, all the TCP connection information is recorded in this
structure. TCP connection is ‘one-to-one’ with ‘sock’ structure. Structure ‘sock’ links
to PCB (process control block) ‘task_struct’though structure ‘socket’. Receive queue
contains all packets received on this connection, Write queue contains all packets will
be sent. Accept queue contains all just-finished three-way handshaking TCP
connections. Structure ‘open_request’ represents a just-established connection, the
‘sk’ field of ‘open_request’ points to connection structure ‘sock’. Usually server
application listens on listen socket, once client creates a connection with server, OS
kernel will create the structure ‘open_request’ and structure ‘sock’, and queue it to
accept queue, wake up the listen process, which leads to the ‘accept()’ system call
return. Listen process can not distinguish that the connection is whether be created by
OS kernel network stack, it as well doesn’t concern that. It only thinks that client has
created a connection with it.

Steps are as follows:
(1) Break the link between ‘sock’ structure and source process PCB;
(2) Fake a ‘open_request” structure, fill in it;
(3) Link ‘sock’ to ‘open_request’;
(4) Link ‘open_request’ to ‘accept_queue’ of destination process PCB;
(5) Wake up destination process.
�

When finished connection relay, from user space application perspective, it can not
distinguish that whether the connection is created by TCPHA or OS network stack, it
only thinks that some client creates a connection with it, and sends a HTTP request.
So it serves request, sends response directly to client.

4.3 Symmetric Multiple-Thread Transaction-Driven Architecture

The architecture of server application has important influence on server performance.
To highly parallelize server, we exploit Symmetric Multiple-Thread
Transaction-Driven Architecture in TCPHA, and adopt the kernel thread mechanism
supplied by Linux kernel to implement TCPHA server efficiently.

�

Figure 4. 5 TCPHA process flow

Steps are as follows:
� Accept connection: Accept client connection request by ‘accept()’ system call,

create socket.
� Read request: Read request from socket.
� Schedule and connect to destination server: Parse request, assign a BE, assign an

idle persistent connection from persistent connection pool. If no idle connections,

 14

create a connection with BE.
� Migrate connection: Send connection information to BE, BE reconstructs

connection by using connection information.
� Reset connection, enroll connection: When receives handoff ACK, reset the

connection, record the four-tuple of the connection to hash table.

In TCPHA implementation, we adopt Linux kernel thread to implement Symmetric
Multiple-Thread Transaction-Driven Architecture. Linux kernel thread is different
with usual thread concept, it is intervenient between process and thread. Kernel
threads share OS global variables, but their execution is independent. If one kernel
thread suspend, other kernel threads won’t suspend again. Furthermore, kernel thread
runs in ring0 privilege, it directly accesses kernel memory, so the page swapping and
system call overhead are avoided, so its performance is high. In transaction-driven
implementation, we modify the ‘poll()’ system call in Linux kernel to permit kernel
thread call it, which supply a novel programming model for kernel thread.

4.4 ARP problem and the solution: ARP Filtering

As said above, FE and BE share VIP address. When client want to connect to VIP, it
will first send an ARP request to acquire MAC address of VIP. Our goal is making
client create connection with FE, so we must let BE won’t send out ARP response. Or
else client will directly connect with BE, FE is bypassed. FE can not perform load
balancing function. The cluster configuration is exposed to client, which may bring
hidden trouble in security. The worse is that due to ARP caching, large numbers of
clients will access the same BE at the same time, other BE are idle, which leads to
load unbalance. Or when client is transmitting data with one BE, it receives another
ARP response from other BE, it changes the ARP table entry. Then the data is sent to
another BE, surely it will receive a RST from there. And if the resource is classified to
store by content, the data set on different BE is different. If client create connection
directly with BE, it may not acquire the request content. So ARP problem is a key
problem.

Before Linux 2.0, solving this problem is very simple, for some devices (named
‘nonarp’ device) won’t do ARP response, such as tunnel0, dummy0, lo0. So we only
need configuring VIP on these devices. But from Linux 2.2, all these devices will do
ARP response. Current systems, such as IPVS, adopt a kernel patch to solve it. Here
we utilize the Netfilter framework supplied from Linux 2.4, propose another solution,
we name it ARP Filtering. TCPHA hooks the ARP_IN chain and ARP_OUT chain, to
intercept/rewrite ARP packets. When an ARP packet arrives, it will be sent to ARP_IN
chain and intercepted by TCPHA. If it is ARP request and destination is VIP, TCPHA
drops it. If the source address is VIP (sent by FE), here need some special operation.
For BE will think that the packet is sent by itself, it will directly drop it in network
stack. Then FE won’t know BE’s existence, it as well can not forward packets to it. At
the same time, we must let BE don’t know that there are some hosts address is the

 15

same with itself, which may incur some unknown troubles (for example, Windows
will inform user IP address conflict, disable the IP address), so we modify the source
address to an un-existing address X. When an ARP packet will be sent, it will be sent
to ARP_OUT chain and intercepted by TCPHA. If the source address is VIP, TCPHA
modify it to IP tunnel device address, if destination is X, modify it to VIP. By such
operations it can not only avoid BE inform its VIP, but also let FE know the BE’s
existing. In fact, VIP on BE is a silent IP address, only known by itself. And for
TCPHA is implemented as a loadable device driver module, after it is unloaded, ARP
filtering will abolish, which won’t influence normal network stack behavior.

4.5 Regular Expression Rule Matching

As we all know, regular expression is a powerful tool for pattern matching and
replacing. We can find regular expression in almost all UNIX based tools, such as vi
editor, Perl or PHP script, and awk or sed shell program. User can set very
complicated pattern by using regular expression. In TCPHA, we supply regular
expression rule matching support, so administrator can set complicated schedule rule
to load balancing. For example, storing image files and HTML files on different BE,
setting file extend name matching rule to load balancing. In implementation, we only
port regular expression library written by Henry Spencer to kernel.

4.6 Dynamic IP Tunneling

IP tunneling technique encapsulates an IP packet into another IP packet, which makes
the packet can be forwarded to another destination. IP tunneling is also named IP
encapsulation. IP tunneling is mainly used in mobile host and VPN (Virtual Private
Network), in which the tunneling is created statically, the IP address of two endpoints
is fixed and exclusive.

We adopt IP tunneling to forward packets to BE, it is because that if forward directly,
the packet destination is FE itself, the packet won’t be sent to network physically.
Furthermore, there are many BE not one, so we can not create tunnel statically, but
choose a BE dynamically, encapsulate the packet according to IP tunnel protocol and
sends it out to BE. Here we studied the Linux source of IP tunnel protocol, made
reference to it to implement dynamic IP tunneling technique.
�

Steps are as follows:
(1) Search the route to BE;
(2) Extend the headroom of packet, leave a IP header room;
(3) Fill in the IP tunnel protocol header;
(4) Calculate checksum;
(5) Send it out to network.

 16

4.7 Local Node Feature

If the local node feature is enabled, FE can not only redirect the packets of the
specified port to BE to process it, but also can process the packets locally (local node).
Which node is chosen depends on the scheduling algorithms. This local node feature
can be used to build a virtual server of a few nodes, such as 2, 3 or 4 nodes, in which
it is a resource waste if FE is only used to redirect packets. It is wise to direct some
packets to the local node to process.

This feature can also be used to build distributed identical servers, in which one is too
busy to handle requests locally, and then it can seamlessly forward requests to other
servers to process them.

4.8 P-HTTP Support (Under Discussion)

HTTP/1.1 introduces persistent connection support by ‘keepalive’ option. In TCPHA
0.2 release, it will forward successive requests on migrated connection to the first
scheduled BE, in other words, TCP handoff is only done once. It is efficient enough to
software download website, media service website etc. These websites will return a
great deal of data when receive a request. In TCPHA 0.3 release, we propose
multi-handoff technique to support P-HTTP more efficiently. The core idea is: To
persistent connection, let BE take part in scheduling too, which can solve FE
performance bottleneck problem efficiently. FE only schedules the first request on the
persistent connection, and migrates the connection to chosen BE. If successive request
arrives, it is up to the scheduled BE to schedule again. Here BE’ function is the same
with FE, it parses new request, does scheduling according to rules. If it schedules to
itself, handle it directly. If it schedules to another BE, it initiates a handoff course,
migrates the connection to new BE, resets connection, informs FE new BE address.
This needs BE knowing the configuration of cluster. If connection data structure has
multi copies in different BE, the state synchronization is very complicated, and some
unpredictable influence may occur on client. Such as one BE closes the connection
when another BE is transmitting data on this connection. So the key point of
multi-handoff is making only one connection data structure existing in BE.

4.8.1 Single Handoff Course

1. Client C creates a TCP persistent connection with kernel thread T on FE, T creates
corresponding data structure. Client sends the first HTTP request to FE, T receives it,
sets the connection status HANDOFFING, and records the connection in hash table.
For System hooks the NF_IP_LOCAL_IN and NF_IP_FORWARD chains, program
in BH (Bottom Half) layer (abbreviate to BH, the same below) can handle the
successive packets on the connection according to hash table. To HANDOFFING

 17

status, BH will drop all successive packets on the connection to make the handoff
course proceed atomically. T parses request, does scheduling, assumes it schedules to
BE1, T acquires connection information from the connection ‘sock’ structure inside
runtime kernel, constructs handoff request and sends it out to BE1.

2. BE1 receives handoff request, reconstructs connection, relays the connection to user
space HTTP server, and sends out ACK to FE. Kernel thread T on FE receives ACK,
records the BE1 address in the hash table, and sets the connection status
HANDOFFED. To this status, BH will forward all input packets on this connection to
BE1, drop output packets. Then FE resets connection.

3. Once FE watches the FIN or RST packet on this migrated connection, it sets the
connection status TIME_WAIT. After some time, it clears the connection information
from hash table.

Fault Tolerance:
1. In handoff course, if the packet FE sent to BE1 is lost or BE1 is not available, FE

won’t receive ACK from BE. When timeout, FE closes the connection with client,
clears the connection data structure in hash table.

2. If response is lost, handle method is the same with above.

4.8.2 Multi-Handoff Course

The prophasic work process is the same with single handoff course. Besides, BE
records the migrated to it connections and takes part in scheduling too. System hooks
NF_IP_LOCAL_IN and NF_IP_FORWARD chains, to facilitate BH handling the
successive packets on the connection though hash table. First BE1 sets the connection
status ESTABLISHED. To this status, BH algorithm: Receive all TCP control packets
(zero payload packets). If set FIN or RST in packets, modify the connection status to
TIME_WAIT. If payload is not zero, regard it as a new HTTP request. Here BE1 does
the same jobs with FE. BE1 pareses the request, does scheduling. If BE1 schedules to
itself, it receives the packets directly. If BE1 schedules to BE2, BH on BE1 delivers the
packet to kernel thread T’ on BE1, sets the connection status WILLHANDOFF, return
NF_STOLEN. To WILLHANDOFF status, BH receives all TCP control packets, If
FIN or RST is set in packet, set the connection status TIME_WAIT. If payload is not
zero, drops it. It is to ensure that before new handoff course has been finished, BE1

won’t receive new requests. T’ receives the HTTP request, connects to BE2, searches
the connection ‘sock’ structure in network protocol, if the ‘sock’ structure indicates
that the connection status is TCP_ESTABLISHED, and hash table indicates that
connection status is WILLHANDOFF, then T’ changes connection status to
HANDOFFING. To this status, BH will drop all input and output packets on this
connection. BE1 extracts the connection information, constructs handoff request and

 18

sends it out to BE2. BE2 does the connection reconstructing, relays the connection to
user space HTTP server, and informs BE1 that handoff is successful. When BE1

receives ACK, resets the connection, sets the connection status HANDOFFED. To
this status, BH on BE1 will forward all input packets to BE2, Output packets return
NF_STOLEN. When timeout, BH will delete the connection from hash table. Then T’
on BE1 will inform FE forward destination changes to BE2, When receives FE ACK,
BE1 will delete the connection from hash table.
�

Algorithm key: To make connection safely migrate between BE, the key is to ensure
that only when BE1 has received ACK to HTTP response then does connection
handoff. For example, client requests index.htm, FE migrates the connection to BE1,
BE1 serves request, sends out the file to client. Client receives it, sends out ACK. If
before BE1 receives ACK, BE1 migrate the connection endpoint on BE1 to BE2

(according to HTTP/1.1, it is possible, such as client sends two requests at the same
time), then BE2 will find that need retransmitting index.htm, but if the file is classified
to store by file type, BE2 will have no such file, say nothing of the retransmit buffer
pointer handling problem. In fact, the key is to let BE2 see a new request need to be
served, not retransmitting a response. Surely this problem can be solved by totally
reconstructing connection including retransmitting buffer too. In another case, if the
BE1’s response is lost, client will retransmit the request for index.htm, this won’t be a
problem, for this will make BE1 schedule to itself, BE1 will receives the request and
serves it again.

In this algorithm, we add the WILLHANDOFF status on BE. For from BH delivers
the packet to kernel thread T’ to T’ determines to do handoff, it must has some delay.
In this time, the connection may be closed, so we need checking connection status in
‘sock’ and hash table before doing handoff. Another measure, dropping all new
requests, but receives all control packets, is also to ensure that BE1 receives ACK
before doing handoff. Also setting HANDOFFED status is to let ACK be sent to BE1.
When BE1 receives ACK from FE, it deletes the connection entry from hash table
immediately. It is because that BE2 may migrate the connection back to BE1, the
connection entry in hash table on BE1 may influence the connection handling.

4.8.3 BE Scheduling Technique

BE scheduling technique is the key to implement multi-handoff. Let BE take part in
scheduling, compares with FE scheduling, has a difficult problem: When FE does
scheduling, the connection has been created with client, HTTP request can be
received directly by kernel thread on FE. But when BE does scheduling, the
connection has been relayed to user space server daemon, then the new requests on
this connection will be sent directly to user space server, kernel thread on BE can’t
receive it. In other words, the owner of this connection is user space web server, not
system kernel thread on BE. Here we utilize Netfilter framework to solve this problem.

 19

In BH layer, system intercepts successive packets on this connection, judges it is
whether be HTTP request (If TCP payload is not zero, regard as it is). If not, sends it
to network protocol stack to do normal process. If is, parses the packets. Note, for it is
in IP layer, needs parsing TCP packet. Then parses HTTP, matches schedule rules. If
schedules to another BE, takes over this packet, not send it back to network stack.
Records the BE address and port in this packet, queues it to an asynchronous packet
queue, sends signal to a particular kernel thread, it is up to that kernel thread to handle
it farther.
�

Steps are as follows:
�1�Check validity of packet, For system runs in IP layer, checking procedures
needed are:

i. Packet is whether be sent to local host, if no, deliver it to network stack;

ii. Packet is whether be sent to loopback device, if so, deliver it to network

stack;

iii. Upper protocol is whether be TCP, if no, deliver it to network stack;

iv. Packet integrality check.
�2�Search hash table according to remote address and port in IP header, Acquire the

connection data structure;
�3�Acquire connection status;
�4�Handle by connection status:

� ESTABLISHED:

I. If FIN or RST bit set, set connection status TIME_WAIT;

II. If TCP control packet (zero TCP payload), deliver it to network

stack;

III. Otherwise regard as HTTP request, do checksum check, scheduling.

If schedule to itself, deliver to network stack; if no, record the new

scheduled BE address and port in the packet, queue the packet to an

asynchronous queue, send signal to kernel thread.

� WILL_HANDOFF:

I. If FIN or RST bit set, set connection status TIME_WAIT;

II. If TCP payload not zero, regard as new HTTP request, drop it;

III. Otherwise deliver it to network stack.

� HANDOFFING: Drop it;

� HANDOFFED: Encapsulate it and forward it to newly scheduled BE.
�5�If kernel thread is notified, it checks the asynchronous packet queue, if finds it

not empty, peeks an entry from it, it is a HTTP request. It extracts new BE address
and port from it, creates connection with the BE, extracts the original HTTP request,
acquires the connection information from network stack, constructs a handoff
request, sends it out to newly scheduled BE.

 20

�6�Get ACK from newly scheduled BE, if handoff is successful, inform FE the new
BE address and port, reset the connection, delete entry from hash table.

4.9 High Availability

TCPHA supplies high availability for cluster. FE will send detection packets to BE
periodically (the interval is settable, value 0 will shut down the function), BE will
return response. In the next TCPHA release, we will include load information in
response, implement dynamic load feedback. In current release, BE returns only work
status. If in some time, FE doesn’t receive response from BE, it thinks that the BE is
not available. FE will mark the BE’s status not available. When do scheduling, FE
won’t schedule to this BE. On the other hand, if BE comes back to available, it will
respond to detection again. When FE receives response again, it will mark the BE’s
status available and take part in scheduling. So BE collapse won’t influence cluster
service.

4.10 Dynamic Scalability

TCPHA permits adding new BE to cluster in runtime, no need stopping or restarting
cluster service. When a new BE is added, it will read the configuration file, acquire
FE address and own schedule rule, send out register request to FE, inform its schedule
rule. FE will process register request, add BE information to BE listing, send out
register success response to BE. Then BE can take part in scheduling like other
statically configured BE.

4.11 Journaling

TCPHA supplies powerful journaling function. User can choose recording the
information in file: /var/log/messages or the file user specify, also can control the
detail level. Most detailed message includes all request content and process course.
User can monitor and debug the cluster system easily.

